Technical

Understanding Cobot Safety Standards: ISO/TS 15066 Explained

A practical guide to collaborative robot safety standards and how to implement safe human-robot collaboration in your facility.

What Makes a Robot “Collaborative”?

“Collaborative robot” describes a robot designed for use around people, but safe collaboration is achieved by system design, not by the robot alone.

TopicWhat it means in practice
Cobot as a productThe robot has built-in safety functions and a design intended for human proximity
Collaboration as an applicationThe workcell is engineered so that the risk level is acceptable for the intended task

ISO/TS 15066 is the reference that helps you engineer the second part: the application.

Standards You Actually Use (And What Each Covers)

StandardScopeWhy it matters
ISO 10218-1 / ISO 10218-2Industrial robot safety (robot and integration)Baseline safety expectations for industrial robot systems
ISO/TS 15066Collaborative operation guidanceDefines collaboration modes and provides guidance for risk reduction
ISO 12100Risk assessment methodologyHow to systematically identify and mitigate hazards
ISO 13849 (or IEC 62061)Functional safety designHow to implement safety functions to required performance levels

Four Collaboration Modes (ISO/TS 15066)

ISO/TS 15066 describes four commonly used ways to achieve safe collaboration. The “best” mode depends on the task, tooling, and exposure.

Collaboration modeWhat happensTypical fitTypical safety functions
Safety-rated monitored stopRobot stops when a person enters the collaborative spaceOccasional human interventionSafety-rated sensors, stop and reset logic
Hand guidingOperator guides robot motion directlyTeaching, setup, ergonomic assistEnable device, reduced speed mode, accessible e-stop
Speed and separation monitoringRobot slows/stops based on distance to a personShared area with predictable trafficSafety scanners, zoning, dynamic speed limits
Power and force limiting (PFL)Robot limits impact energy in contact scenariosClose interaction tasksForce/torque limits, speed limits, validated tooling design

ISO/TS 15066 also provides guidance on body-region-specific transient contact thresholds and measurement methods. Always consult the latest revision and validate your specific end-effector and workpiece risks.

Risk Assessment Workflow (Engineering View)

StepOutput you should expect
Identify hazardsA hazard list that includes tooling, workpieces, pinch points, and unexpected motion
Estimate riskSeverity and probability assumptions documented (not “in someone’s head”)
Select safeguardsEngineering controls prioritized before administrative controls
Implement safety functionsSafety I/O map, safety PLC or safety relay logic, verified stop behavior
Validate and documentTest records, measured limits where required, and sign-off evidence

Typical Safety Functions in a Cobot Cell

Safety areaTypical implementation patterns
Zone awarenessSafety scanners or interlocked doors defining speed-limited and stop zones
Stop architectureSystem-level e-stop network, controlled stop categories, safe restart rules
Tooling and workpiece safetyRounded edges, limited protrusions, controlled pinch points, breakaway or compliance features where suitable
Verification and recoveryVision/position checks, grip confirmation, error states that prevent unsafe retries
DocumentationRisk assessment, safety function validation, operating instructions, training records

Motionwell References (Where Cobots Meet Real Production)

Project referenceWhere the cobot is usedWhy safety design is non-negotiable
Project P23078 (QA Lab Automation)Cobot-assisted sample handling and station loadingShared lab environments require clear zoning, predictable recovery, and traceable state transitions
Project P23022 / P23019 (EV Battery Disassembly Line)Collaborative robot used at a vision-related station within a broader automated lineMixed automation with high-risk workpieces makes risk assessment and safeguarding strategy essential

Frequently Asked Questions

QuestionAnswer
If I buy a cobot, do I automatically comply with ISO/TS 15066?No. Compliance depends on the complete application: tooling, workpiece, speeds, zones, and validation evidence. The robot is only one part of the safety case.
Do collaborative cells always require no guarding?Not necessarily. Many real cells are hybrid: collaborative behavior in one zone and physical safeguarding in another, depending on risks and tooling.
Is power-and-force limiting (PFL) always the best choice?Not always. PFL is useful for close interaction tasks, but speed/separation monitoring or monitored stop can be a better fit when tooling or workpiece risks dominate.
What is the single most common mistake in cobot safety projects?Treating safety as a late-stage add-on. Safety zoning, stop architecture, and recovery logic should be defined during concept design, not during commissioning.

Conclusion

Safe human-robot collaboration is a design outcome. ISO/TS 15066 helps you choose an appropriate collaboration mode, execute a structured risk assessment, and implement validated safety functions that match your workflow.

If you are planning a collaborative robot application, contact us at /contact/ to review the safety concept before you lock the layout and tooling decisions.

Ready to Automate Your Operations?

Contact us to discuss your automation needs and explore how we can help.

Get in Touch